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In the literature it has so far been common practice to consider solitary waves
and N-waves (composed of solitary waves) as the appropriate model of tsunamis
approaching the shoreline. Unfortunately, this approach is based on a tie between the
nonlinearity and the horizontal length scale (or duration) of the wave, which is not
realistic for geophysical tsunamis. To resolve this problem, we first derive analytical
solutions to the nonlinear shallow-water (NSW) equations for the runup/rundown
of single waves, where the duration and the wave height can be specified separately.
The formulation is then extended to cover leading depression N-waves composed
of a superposition of positive and negative single waves. As a result the temporal
variations of the runup elevation, the associated velocity and breaking criteria are
specified in terms of polylogarithmic functions. Finally, we consider incoming transient
wavetrains generated by monopole and dipole disturbances in the deep ocean. The
evolution of these wavetrains, while travelling a considerable distance over a constant
depth, is influenced by weak dispersion and is governed by the linear Korteweg–De
Vries (KdV) equation. This process is described by a convolution integral involving
the Airy function. The runup on the plane sloping beach is then determined by
another convolution integral involving the incoming time series at the foot of the
slope. A good agreement with numerical model results is demonstrated.

1. Introduction
Analytical runup expressions for various wave forms such as periodic waves, single

waves, leading depression or leading elevation N-waves, as well as transient waves
are presented in this paper. Such solutions are convenient for obtaining a first
assessment of tsunami impact on beaches, and they are also useful for experimental
investigations and for the purpose of calibrating runup modules in numerical models.
We emphasize, however, that the modelling of real tsunamis and their impact on
coastlines require advanced numerical modelling incorporating three-dimensional
effects such as refraction and diffraction, but this is beyond the scope of the present
work.

Since the early 1970s, the prevailing paradigm has been to assume that solitary
or cnoidal waves can be used to model some of the important features of tsunamis
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approaching the beach, and that these theories, originating from the KdV equation,
can define the relevant input waves for physical and mathematical models of tsunamis
and their associated processes. In the solitary wave paradigm the incoming wave is
typically given on the form

η(x, t) = H sech2 (Ks(x − ct)) , Ks =
1

h

√
3H

4h
, (1.1)

i.e. the wavenumber is defined by the ratio of the wave height to the water depth. The
theoretical work by Synolakis (1987) represents an important milestone by deriving
analytical runup formulas for incoming solitary waves. Examples from the literature
utilizing and promoting this paradigm are numerous (see e.g. Goring 1978; Synolakis
& Deb 1988; Synolakis, Deb & Skjelbreia 1988; Yeh et al. 1994; Briggs et al. 1995;
Liu et al. 1995; Li & Raichlen 2001, 2002, 2003; Tonkin et al. 2003; Jensen, Pedersen
& Wood 2003; Synolakis & Bernard 2006; Lynett et al. 2008).

As an alternative to this paradigm, Tadepalli & Synolakis (1994) introduced the
concept of N-waves, which were defined as e.g. isosceles N-waves given by

η(x, 0) =
3
√

3

2
H sech2 (Kis(x − x1)) tanh (Kis(x − x1)) , Kis =

3

2h

√
H

h

√
3

4
(1.2)

or generalized N-waves given by

η(x, 0) = α
H

h
(x − x2) sech2 (Ks(x − x1)) , Ks =

1

h

√
3H

4h
(1.3)

with α being a scaling parameter (of order one) included to ensure that the wave height
of the N-wave was actually H . To a certain degree, the work by Tadepalli & Synolakis
(1994) represented a change from the solitary wave paradigm (see the reviews by
Synolakis, Okal & Bernard 2005; Synolakis & Bernard 2006). However, first of all,
their work did not have much impact on procedures used in experimental studies
of tsunamis. Secondly, the N-wave expressions (such as (1.2)–(1.3)) both incorporate
the classical solitary wave tie between the wavenumber Ks and the nonlinearity H/h,
which means that they are basically composed of solitary or solitary-like waves.

Recently, Madsen, Fuhrman & Schäffer (2008) demonstrated that waves
incorporating the solitary wave tie are fundamentally inappropriate for geophysical
tsunamis, and they came to the following conclusions:

(a) Initial surface displacements due to seismic activity in the deep ocean tend
to develop leading waves governed by weak linear dispersion. Hence during this
stage, the appropriate model is the linear KdV equation for which the solution is
a convolution involving the initial elevation and the Airy function. With time the
effective dispersion associated with the leading waves will decrease, and at some stage
it will reach the level of nonlinearity at hand. In principle, this heralds a shift to the
full KdV dynamics, but it will not occur within realistic travel distances in the ocean
or on the continental shelf.

(b) During shoaling from the deep ocean to the nearshore, nonlinearity grows
rapidly, while the effect of dispersion becomes smaller and smaller. In this process,
the asymmetry of the wave profiles will increase, while skewness remains at low levels
and representative wave periods in the transient wave stay almost constant even on
very mild bottom slopes. During this stage the appropriate model is the nonlinear
shallow-water (NSW) equations.

(c) Close to the beach the front face of the tsunami may become rather steep, and
in this case it can disintegrate into an undular bore with short and steep transient
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waves. These are typically of the order 10–15 s events riding on top of the main
tsunami, which may be of the order 5–30 min. As demonstrated by Madsen et al.
(2008), the very short waves in the front of the tsunami do represent the KdV scale,
and such events have indeed been observed on several occasions. However, it is
misleading to focus on these short waves in the undular bore without addressing the
main flood wave.

(d) Tsunamis are sometimes reported to be breaking close to the beach. However,
it is typically the short waves riding on top of the tsunami which are breaking rather
than the main tsunami itself, and therefore the runup will not necessarily be strongly
influenced by this breaking process.

On the basis of the work by Madsen et al. (2008), we can conclude that from its
generation in the ocean to its impact at the shore, the relevant length- and time-scales
of the bulk tsunami is never defined by the solitary wave tie i.e. given by the ratio
of the wave height to the water depth. This questions the geophysical relevance of
earlier analytical and experimental work on the runup of breaking or non-breaking
relatively short solitary waves such as reported by, e.g. Synolakis (1987), Briggs
et al. (1995), Liu et al. (1995), Li & Raichlen (2001, 2002, 2003), Tonkin et al. (2003),
Jensen et al. (2003) and Lynett et al. (2008). Obviously, it makes a difference whether
you consider the runup of wind waves, tsunamis or tidal waves. The solitary waves
used as input in so many laboratory tests throughout the last 20 years represent wave
phenomena at a completely different time- and space-scale than those associated with
tsunamis. The runup and the associated wave breaking are very sensitive to whether
the typical wave period is 15 s or 15 min in prototype scale. No matter if full scale
tsunami phenomena or their laboratory model scale equivalents are considered, it is
inappropriate to use the prevailing solitary wave tie to link the ratio of the vertical
scale (wave height) to the horizontal scale (wavelength or equivalently the period).

To be fair to the work by Tadepalli & Synolakis (1994), it should be mentioned
that Geist & Yoshioka (1996) were actually able to use their generalized N-wave
formulation (1.3) as a match of computed tsunami wave forms along the continental
shelf (depth 1 km) in connection with the Cascadia faults (see their figure 14).
However, unfortunately, they did not provide sufficient information about how they
succeeded to break loose from the solitary wave tie and match the geophysical length
scales with (1.3). A recent personal communication with Eric Geist has revealed
some of the mystery: After realizing that the conventional use of (1.3) would fail, he
calibrated H/h to match the horizontal length scale of the phenomenon (via Ks). This
would make H/h orders of magnitude different from the physical value, but he then
calibrated α to twist the wave height back in place. For the five cases shown in figure 14
in Geist & Yoshioka (1996), the following calibration parameters were applied:
(a) H/h = 0.007, α = −0.0148; (b) H/h = 0.035, α = −0.0061; (c) H/h = 0.049,
α = −0.0087; (d ) H/h = 0.019, α =0.00255; (e) H/h =0.027, α = −0.0090. The
actual wave height-to-depth ratios were much smaller than these values. Hence,
we do acknowledge, that the expressions derived by Tadepalli & Synolakis (1994)
can be applied to geophysical events if the parameters are tweaked accordingly.
Furthermore, it should be mentioned that Tadepalli & Synolakis (1996) modified
their original formulation (1.3) to incorporate an extra free parameter p0 in the
determination of the wavenumber

Ks =
1

h

√
p0

3H

4h
. (1.4)

However, they did not discuss why this was necessary and they did not provide
any guidance in choosing the parameters. In the examples presented by Tadepalli
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& Synolakis (1996), p0 was either set to unity (their figure 1) or it was undefined
(their figures 2, 3, 4 and 5). One of the reviewers of the present paper has now kindly
provided a set of parameters leading to a good match of the incoming wave profile
of the Nicaragua 1992 tsunami shown in Tadepalli & Synolakis (1996), their figure
5: The water depth was h = 3000 m, and the parameters in (1.3)–(1.4) were chosen
to be H/h = 0.00033, α =0.43394, x1/h= 17, x2/h= 16.5 and p0 = 200 leading to
Ksh = 0.2225. The fact that p0 is so large (and not of order unity as expected),
actually confirms our viewpoint that the solitary wave tie for tsunamis is a flaw. We
have not been able to find any previous papers that discuss the necessity of fixing
this problem or address when and how this could and should be done.

In this work, we first derive analytical solutions for the runup/rundown of incoming
single waves described by sech2(Ωt −Kx), where Ω is chosen freely rather than being
tied to the wave height to depth ratio as in solitary wave theory. Furthermore, we
consider incoming leading depression waves composed of a superposition of positive
and negative single waves. Finally, we present a simple and fast method to evaluate
the runup of incoming transient wavetrains. The work is organized as follows.
Section 2.1 gives a brief summary of the linear runup solution by Keller & Keller
(1964) for the canonical problem of a constant depth section attached to a constant
slope section. Section 2.2 provides a brief review of the hodograph transformation
for nonlinear waves by Carrier & Greenspan (1958), and discusses the corresponding
breaking criterion. In §§ 2.3–2.4, general expressions for the runup elevation and the
associated velocity are given in terms of inverse Fourier transforms involving the
time series of the incoming wavetrain at the foot of the slope. These transforms can
be determined either by complex contour integration or by convolution integrals.
The former method is well suited for providing analytical expressions for simple
wave forms, while the latter is particularly useful for arbitrary input wavetrains.
These solutions are developed for sinusoidal waves in § 3 and for single waves in § 4.
By applying the classical solitary wave tie between the duration and the nonlinearity,
we recover the solution by Synolakis (1987) for solitary waves. Section 5 deals with
leading depression N-waves composed of a superposition of positive and negative
single waves. In § 6, the maximum runup solutions are combined with the theoretical
breaking criteria, and the results for sinusoidal waves, single waves and leading
depression waves are discussed in the framework of the surf similarity parameter.
Finally, in § 7, we consider incoming transient wavetrains generated by monopole
and dipole disturbances in the deep ocean. The evolution of these wavetrains, while
travelling over constant depth in the deep ocean is described by a convolution
integral involving the Airy function, and the runup on the plane sloping beach is then
determined by another convolution integral involving the incoming surface elevation
time series at the foot of the slope. Summary and conclusions are given in § 8.

2. Governing equations for the runup of nonlinear long waves
Theoretical analyses of long wave runup on beaches are usually based on either

the linear or the NSW equations. While the linear solutions go back a long time
(see e.g. Green 1838; Lamb 1932; Lewy 1946), Carrier & Greenspan (1958) were
the first to provide an analytical solution to the NSW equations for the runup of
normally incident monochromatic waves on a uniformly sloping beach. Later, Carrier
(1971) and Synolakis (1987) came to the important conclusion that the maximum
runup on the beach evaluated from linear theory is identical to the one evaluated
from nonlinear theory, despite the fact that the solutions in general may deviate
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Figure 1. A definition sketch for a single wave climbing up a sloping beach.
Still water level (SWL).

significantly in time and space. Keller & Keller (1964) were the first to consider the
canonical problem of waves propagating first over a constant depth offshore region
and then up a uniformly sloping beach. They provided a linear solution to this
problem for sinusoidal incident waves. Later, their work was extended to waves of
different forms by, e.g. Gjevik & Pedersen (1981), Synolakis (1987), Synolakis & Deb
(1988), Synolakis et al. (1988), Pelinovsky & Mazova (1992), Tadepalli & Synolakis
(1994, 1996), Li & Raichlen (2001), Didenkulova et al. (2006), and Didenkulova et al.
(2007). Most of these extensions utilize a combination of Carrier and Greenspan’s
nonlinear hodograph transformation (Carrier & Greenspan 1958) and Keller and
Keller’s linear transfer function (Keller & Keller 1964) from the flat bottom to the
slope.

In this work we follow the derivation procedure outlined by Synolakis (1987). The
one-dimensional bathymetry consists of an offshore constant depth region attached
to a plane sloping beach (see figure 1). The coordinate system has its origin at the
still water shoreline, with the x-axis pointing in the offshore direction and the z-axis
pointing upwards. Hence, the spatial variation of the still water depth is described
by h(x) = γ x, for x � x0, and h(x) = h0, for x � x0, with γ being the constant
beach slope. A boundary value problem (BVP) is considered, and the objective is to
establish the runup in terms of the incoming time series at the foot of the slope. The
incoming waves are assumed to obey the linear shallow-water equations or the linear
KdV equation in the constant depth region, while they obey the NSW equations on
the sloping beach. Throughout this paper, the effects of wave breaking and bottom
dissipation are neglected, and full reflection from the beach is assumed.

2.1. The linear sinusoidal wave solution

In the following we briefly summarize the linear solution to the BVP problem sketched
above as first derived by Keller & Keller (1964). The incoming and reflected waves
propagating over the flat bottom are described as linear sinusoidal long waves with
amplitudes Ai and Ar . With full reflection at the shoreline the linear standing wave
solution on the sloping beach becomes

ηs(x, t) = AsJ0(σ )e−iωt , Us(x, t) = i
2ω

γ
As

J1(σ )

σ
e−iωt , (2.1)

where ηs(x, t) is the surface elevation and Us(x, t) the velocity component in the x

direction. Furthermore, As is the shoreline elevation amplitude, Jn is the nth-order
Bessel function of the first kind, i is the imaginary unit and ω is the angular frequency.
Finally, σ is defined by

σ ≡ 2ω

√
x

gγ
, (2.2)
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where g is the acceleration of gravity. At the toe of the slope we have x0 = h0/γ , i.e.

σ0 = 2ωt0 = 2k0x0, where t0 ≡ x0√
gh0

, k0 ≡ ω√
gh0

. (2.3)

Continuity in surface elevation and velocity at x = x0 now leads to the solution

Ar =

(
J0(σ0) + iJ1(σ0)

J0(σ0) − iJ1(σ0)

)
Aie

−i2k0x0 , As =

(
2

J0(σ0) − iJ1(σ0)

)
Aie

−ik0x0 , (2.4)

and by inserting (2.4) into (2.1) we obtain

ηs(x, t) =

(
2J0(σ )

J0(σ0) − iJ1(σ0)

)
ηi(x0, t), (2.5)

which determines the surface elevation on the sloping beach in terms of the time
series of the incoming wave at x = x0. Although this result is restricted to linear
sinusoidal waves, Synolakis (1987) demonstrated its importance for establishing
nonlinear solutions for more general wave forms. We shall discuss this issue in
further detail in the following sections.

2.2. The hodograph transformation by Carrier & Greenspan (1958)

We now return to the problem of nonlinear waves on the sloping beach described by
the NSW equations. The conventional form of these equations reads

∂η

∂t
+

∂

∂x
(U (h + η)) = 0,

∂U

∂t
+ U

∂U

∂x
+ g

∂η

∂x
= 0. (2.6)

It is by no means a trivial task to obtain analytical solutions to these equations, but
Carrier & Greenspan (1958) provided an elegant method in their pioneering work,
which we briefly summarize in the following. Firstly, (2.6) is expressed in characteristic
form by which the Riemann invariants (α, β) are identified. Secondly, the independent
coordinates are transformed from (x, y) to (α, β), which leads to

∂x

∂α
− (U − C)

∂t

∂α
= 0,

∂x

∂β
− (U + C)

∂t

∂β
= 0, (2.7)

where

α ≡ U + 2C − gγ t , β ≡ U − 2C − gγ t , C ≡
√

g(h + η). (2.8)

Thirdly, a new set of independent variables (ρ, λ) is introduced in terms of the sum
and difference of the (α, β) variables. Many slightly different formulations of this step
has been reported in the literature (see e.g. Carrier & Greenspan 1958; Synolakis
1987; Mei, Yue & Stiassnie 2005), but we prefer a formulation where λ becomes equal
to t in the linear limit. This is achieved by using

λ ≡ − 1

2gγ
(α + β), ρ ≡ 1

2gγ
(α − β). (2.9)

Furthermore, we introduce the velocity potential ψ(ρ, λ) defined by

∂ψ

∂ρ
= ρU ,

∂ψ

∂λ
= 2

(
x − U 2

2gγ
− gγρ2

4

)
. (2.10)

When (2.9) and (2.10) are inserted into (2.7), the following linear differential equation
is obtained

∂2ψ

∂ρ2
+

1

ρ

∂ψ

∂ρ
− ∂2ψ

∂λ2
= 0. (2.11)



Analytical runup solutions for tsunamis on a plane beach 33

This is the main achievement of using the hodograph technique: The fact that two
nonlinear equations in physical space can be expressed as a single linear equation in
transformed space.

The remaining step is to express η, U , x and t in terms of ψ , ρ and λ and from
(2.8)–(2.10) the following relations can be obtained

U (ρ, λ) =
1

ρ

∂ψ

∂ρ
, η(ρ, λ) = −

(
γ

2

∂ψ

∂λ
+

U 2

2g

)
, (2.12)

t(ρ, λ) = λ +
U

gγ
, x(ρ, λ) =

1

2

∂ψ

∂λ
+

U 2

2gγ
+

gγρ2

4
. (2.13)

We note that the mapping between (x, t) and (ρ, λ) is governed by the chain rule, e.g.

∂η

∂λ
=

∂η

∂x

∂x

∂λ
+

∂η

∂t

∂t

∂λ
,

∂η

∂ρ
=

∂η

∂x

∂x

∂ρ
+

∂η

∂t

∂t

∂ρ
, (2.14)

which leads to
∂η

∂x
=

M1

M0

,
∂η

∂t
=

M2

M0

, (2.15)

where

M0 ≡

∣∣∣∣∣∣∣∣
∂x

∂ρ

∂t

∂ρ

∂x

∂λ

∂t

∂λ

∣∣∣∣∣∣∣∣ , M1 ≡

∣∣∣∣∣∣∣∣
∂η

∂ρ

∂t

∂ρ

∂η

∂λ

∂t

∂λ

∣∣∣∣∣∣∣∣ , M2 ≡

∣∣∣∣∣∣∣∣
∂x

∂ρ

∂η

∂ρ

∂x

∂λ

∂η

∂λ

∣∣∣∣∣∣∣∣ (2.16)

and equivalent expressions for the derivatives of U . In this process the ρ and λ
derivatives of x, t , η and U are easily determined by (2.12)–(2.13), and in combination
with (2.11) this leads to, e.g.

M0 =
ρ

2gγ

((
gγ +

∂U

∂λ

)2

−
(

∂U

∂ρ

)2
)

. (2.17)

Obviously, the Jacobian M0 plays an important role in this mapping.

2.2.1. Conditions at the shoreline

The moving shoreline is defined where d = h + η is zero at all time. According to
(2.8), this implies that C should be zero, which in turn according to (2.9) implies that
this location is defined by ρ = 0. The runup elevation R and the associated runup
velocity V are defined by

R(λ) = lim
ρ→0

η(ρ, λ), V (λ) = lim
ρ→0

U (ρ, λ). (2.18)

It turns out that simple relations can be established for the time derivatives of R

and V despite the nonlinear transformation: As both quantities are associated to the
shoreline, which is moving in (x, t) space, it follows that

dR

dt
= lim

ρ→0

(
∂η

∂t
+ U

∂η

∂x

)
,

dV

dt
= lim

ρ→0

(
∂U

∂t
+ U

∂U

∂x

)
. (2.19)

Firstly, we insert (2.15) and the equivalent expressions for the derivatives of U in
(2.19). Secondly, we perform a Taylor expansion of (2.19) around ρ = 0, and this is
achieved by considering a general solution of the form ψ ∼ J0(ωρ)F (ωλ), where F is
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an unknown function. This effort leads to

dR

dt
= −γV (t),

dV

dt
=

dV

dλ

(
1 +

1

gγ

dV

dλ

)−1

, (2.20)

and

lim
ρ→0

(
∂η

∂x

)
= −1

g

dV

dt
. (2.21)

Notice how (2.20)–(2.21) provide a simple relation between the derivatives of R, V

and η despite the fact that they are solutions to the NSW equations at the moving
shoreline.

2.2.2. Theoretical breaking criterion

While the velocity potential ψ , which satisfies (2.11) is always a single-valued
function of ρ and λ, it may become multi-valued in terms of x and t . This happens
if the Jacobian M0 becomes zero inside the fluid domain, i.e. for ρ > 0, and in
this case the mapping formally breaks down. This defines a theoretical breaking
criterion for the solutions. We notice from (2.17) that in fact M0 always vanishes at
the instantaneous shoreline (ρ = 0), and check if M0/ρ can vanish in the vicinity of
the shoreline, i.e. for ρ → 0. To identify this situation, we again assume a general
solution of the form ψ ∼ J0(ωρ)F (ωλ), where F is an unknown function, and expand
M0 around ρ =0. This leads to(

gγ +
∂U

∂λ

)2

= O (1) , and

(
∂U

∂ρ

)2

= O
(
ρ2

)
, (2.22)

and allows us to ignore the last term in (2.17) for ρ → 0. Hence we obtain the
following theoretical breaking criterion in the vicinity of the shoreline:

1

gγ

∂U

∂λ
→ −1 for ρ → 0. (2.23)

Note that according to (2.20)–(2.21), this criterion will make the t derivative of V

and the x derivative of η go to infinity, corresponding to a vertical front face in these
profiles.

This completes the description of the hodograph procedure first developed by
Carrier & Greenspan (1958). As we have used slightly different definitions of the (ρ,
λ) variables and of the velocity potential ψ , the various relations between ρ, λ, ψ in
transformed space and x, t , U and η in physical space differ from the ones of Carrier
& Greenspan (1958), Gjevik & Pedersen (1981), Synolakis (1987), Mei et al. (2005)
and Carrier, Wu & Yeh (2003).

2.3. The runup formulation in terms of inverse Fourier transforms

The objective in this section is to express solutions to (2.11) in terms of Fourier
transforms. The Fourier transform of ψ (with respect to λ) and the corresponding
inverse Fourier transform are defined by

ψ̃(ρ, ω) =
1√
2π

∫ ∞

−∞
ψ(ρ, λ)eiωλ dλ, ψ(ρ, λ) =

1√
2π

∫ ∞

−∞
ψ̃(ρ, ω)e−iωλ dω. (2.24)

Now, the Fourier transform of each of the terms in the governing equation (2.11)
yields

∂2ψ̃

∂ρ2
+

1

ρ

∂ψ̃

∂ρ
+ ω2ψ̃ = 0,
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which has the solution

ψ̃(ρ, ω) = BJ0(ωρ), (2.25)

where J0 is the zeroth order Bessel function of the first kind and B is a complex
coefficient.

In order to determine B , boundary conditions at the toe of the slope (x = x0) should
be established. In general, this location is not well defined in ρ space, because of the
nonlinear relation (2.13) between x and ρ. Synolakis (1987) resolved this problem by
assuming that the toe of the slope is so far away from the shoreline that the nonlinear
effects in the coordinate transformation can be ignored. In this case (2.9) simplify to

λ � t , ρ0 � 2

√
x0

gγ
, (2.26)

i.e. the linearization makes λ equal to t , while ρ0 becomes proportional to
√

x0.
Furthermore, we notice from (2.3) that the linearization leads to ωρ0 � σ0 = 2ωt0.

Naturally, the linearization of the coordinate transformation is a limitation of
the method, if we want to allow for nonlinear waves at the toe of the slope, and
in this respect it was somewhat paradoxical that Synolakis (1987) and Synolakis
et al. (1988) used this approach to study the runup of incoming finite amplitude
cnoidal and solitary waves. Li & Raichlen (2002) improved the matching procedure
for weakly nonlinear waves and considered incoming solitary waves with height over
depth ratios H/h0 from 0.1 to 0.5. They found that their correction was important
for H/h0 > 0.15. However, for seismic tsunamis generated in the deep ocean, the
linearization of offshore wave conditions and coordinate transformations is legitimate.
Consequently, we can also linearize (2.12) at the toe of the slope to obtain

η(ρ0, λ) � −γ

2

∂ψ

∂λ
, (2.27)

and in combination with (2.25) this yields

ψ̃(ρ, ω) = − 2i

ωγ

J0(ωρ)

J0 (ωρ0)
η̃(ρ0, ω). (2.28)

We have now expressed the general solution ψ̃(ρ, ω) in terms of the boundary
condition η̃(ρ0, ω), which defines the Fourier transform of the standing wave solution
at the toe of the slope. As we assume that the wave conditions are linear at this
location, we can utilize Keller and Keller’s (Keller & Keller 1964) linear solution (2.5)
with x = x0. This leads to

η̃(ρ0, ω) = Φ̃i(ω)

(
2J0(σ0)

J0(σ0) − iJ1(σ0)

)
, (2.29)

where

Φ̃i(ω) ≡ 1√
2π

∫ ∞

−∞
Φi(t)e

iωt dt , Φi(t) ≡ ηi(x0, t). (2.30)

By inserting (2.29) in (2.28), utilizing that ωρ0 � σ0 = 2ωt0, and taking the inverse
Fourier transform, we now obtain

ψ(ρ, λ) = − 4i

γ
√

2π

∫ ∞

−∞

Φ̃i(ω)

ω

(
J0(ωρ)

J0(2ωt0) − iJ1(2ωt0)

)
e−iωλ dω. (2.31)
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1

2

3

–6 –4 –2 0 2 4 6
0

0.5

1.0

1.5

2.0

2.5

z = 2t0ω

Figure 2. The absolute value of the Bessel-transfer function Ψ̃η versus its asymptotic
approximations for large arguments. (1) Left hand side of (2.35); (2) first approximation
truncated at O(z−1/2); (3) second approximation truncated at O(z−3/2).

Next, we determine η(ρ, λ) and U (ρ, λ) on the basis of (2.12) and (2.31), and by
letting ρ → 0 in these expressions we obtain the shoreline motions

V (λ) ≡ lim
ρ→0

U = − 1

γ

∫ ∞

−∞
Ψ̃u(ω)Φ̃i(ω)e−iωλ dω, (2.32)

R(λ) ≡ lim
ρ→0

η =

∫ ∞

−∞
Ψ̃η(ω)Φ̃i(ω)e−iωλ dω − V 2

2g
, (2.33)

where

Ψ̃η(ω) ≡ 2√
2π

(
1

J0(2ωt0) − iJ1(2ωt0)

)
, Ψ̃u(ω) ≡ −iωΨ̃η(ω). (2.34)

It turns out that this expression for Ψ̃η(ω) has some disadvantages: First of all, it
prevents us from obtaining closed form analytical solutions to (2.33)–(2.33), e.g. in
connection with complex contour integration. Secondly, we have not been able to
determine its inverse Fourier transform Ψη(λ), which is necessary for the convolution
approach discussed in the following section. However for large arguments of the
Bessel functions we may use the approximation

2√
2π

(
1

J0(z) − iJ1(z)

)
→ (−iz)1/2eiz + (−iz)−1/2

(
1

8
eiz − 1

4
sign(z)ei3z

)
+ O(z−3/2).

(2.35)
Figure 2 shows a comparison between the absolute values of the general expression

and the approximations truncated either at O(z−1/2) or at O(z−3/2). The general
expression starts at

√
2/π for z = 0 and slowly oscillates while growing for larger

values of z. In contrast, the approximation truncated at O(z−1/2) starts at zero for z = 0
and grows without oscillations, while the approximation truncated at O(z−3/2) starts
at infinity but quickly attaches to the general expression with a similar oscillatory
pattern. However, the singularity at z = 0, makes the approximation truncated at
O(z−3/2) less attractive, and instead we concentrate on the approximation truncated
at O(z−1/2). In this case the relative error is less than 5 % for z = 2t0ω > 4.88, which
according to (2.3) corresponds to x0/L0 > 0.4, where L0 = T

√
gh0.
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This approximation, which was also used by, e.g. Synolakis (1987) and Tadepalli &
Synolakis (1994), leads to

Ψ̃η(ω) � (−iω)1/2
√

2t0 ei2t0ω, Ψ̃u(ω) � (−iω)3/2
√

2t0 ei2t0ω. (2.36)

We substitute (2.36) into (2.33)–(2.33) and obtain

V (λ) = −
√

2t0

γ

∫ ∞

−∞
(−iω)3/2Φ̃i(ω)e−iω(λ−2t0) dω, (2.37)

R(λ) =
√

2t0

∫ ∞

−∞
(−iω)1/2Φ̃i(ω)e−iω(λ−2t0) dω − V 2

2g
. (2.38)

Notice that both expressions belong to the family of fractional derivatives: The
runup elevation is essentially the half-derivative of the time series at the foot of the
slope, while the runup velocity is essentially the three-halves derivative. The factor
ei2t0ω represents a delay in the runup signal of 2t0, which is caused by the travelling
time over the sloping beach, i.e.∫ x0

0

dx

c
=

∫ x0

0

dx
√

gγ x
= 2t0.

Generally, there are two ways to solve (2.38)–(2.38): As a first approach, we may
determine the inverse Fourier transform e.g. by complex contour integration, which

is convenient in case Φ̃i has simple poles in the complex plane (see e.g. Synolakis
1987). The advantage of this approach is that it will lead to analytical expressions for
the runup. As a second approach, we may apply the convolution theorem, which is
discussed in the following section.

2.4. The runup formulation in terms of convolution integrals

According to the convolution theorem the inverse Fourier transform of the product

Ψ̃ Φ̃i can be replaced by the convolution between Ψ and Φi , i.e.∫ ∞

−∞
Ψ̃ (ω)Φ̃i(ω)e−iωλdω =

∫ ∞

−∞
Ψ (s)Φi(λ − s) ds. (2.39)

This calls for analytical expressions for the inverse Fourier transforms of Ψ̃η and Ψ̃u,
which are straightforward to determine from (2.36). As an alternative, however, we
introduce the impulse response function

G(λ) ≡ 1√
2π

∫ ∞

−∞

Ψ̃η

(−iω)
e−iωλ dω =

1√
2π

∫ ∞

−∞

Ψ̃u

(−iω)2
e−iωλ dω, (2.40)

and in combination with (2.36) this becomes

G(λ) =

{
2
√

t0(λ − 2t0)
−1/2, λ > 2t0,

0, λ < 2t0.
(2.41)

The physical interpretation of this result is that nothing happens at the shoreline
until after a delay of 2t0 representing the travel time over the sloping beach. Now
(2.38)–(2.38) can be replaced by the convolution integrals

V (λ) = − 1

γ

∫ λ

2t0

G(s)Fu(λ − s) ds, where Fu(t) ≡ ∂2Φi

∂t2
, (2.42)

η(λ) =

∫ λ

2t0

G(s)Fη(λ − s) ds − V (λ)2

2g
, where Fη(t) ≡ ∂Φi

∂t
. (2.43)
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This convolution approach is attractive and easy to apply numerically for any
sufficiently smooth time series of incoming surface elevation. An example of its
application is given in § 7, where we consider an incoming transient wavetrain.

3. Runup solution for sinusoidal waves
The runup solution for sinusoidal waves is well established in the literature (see

e.g. Carrier & Greenspan 1958; Mei et al. 2005), and we use this case to validate the
general expressions from the previous section. Now the time series at x = x0 of the
incoming wave is described by

ηi(x0, t) = A0 cos Ω(t − t1), (3.1)

where Ω is the angular frequency and t1 is an arbitrary phase shift. The resulting
Fourier transform reads

Φ̃i(ω) = A0

√
π

2

(
eiΩt1δ(ω − Ω) + e−iΩt1δ(ω + Ω)

)
, (3.2)

where δ is the Dirac delta function. Inserting (3.2) in (2.38)–(2.38) now leads to

V (λ) =
ΩR0

γ
sin(θ + π/4), R(λ) = R0 cos(θ + π/4) − V (λ)2

2g
, (3.3)

where
R0

A0

√
Ωt0

= 2
√

π, θ ≡ Ω(λ − t1 − 2t0). (3.4)

Here t0 is defined by (2.3), while t(λ) is given by letting ρ → 0 in (2.13), i.e.

t(λ) = λ +
V (λ)

gγ
. (3.5)

The maximum runup occurs when θ = −π/4 at which time V (λ) → 0 and R(λ) → R0.
Similarly, the maximum rundown occurs when θ = 3π/4 at which time V (λ) → 0 and
R(λ) → −R0. The maximum runup velocity occurs when θ = −3π/4 and yields
V (λ) → −ωR0/γ . The temporal variation of R(t) and V (t) can easily be depicted as
a parametric plot in terms of V (λ), R(λ) and t(λ).

3.1. Breaking criterion for sinusoidal waves

By differentiation of (3.3) with respect to λ we get

dV

dλ
=

Ω2R0

γ
cos(θ + π/4), (3.6)

which attains its maximum negative value for θ = 3π/4, i.e. at the time of maximum
rundown. At this moment the breaking criterion (2.23) is met for

R0 =
gγ 2

Ω2
. (3.7)

Inserting (3.4) into (3.7) now yields the breaking criterion

A0

h0

=
1

2
√

π

(
Ω2h0

gγ 2

)−5/4

. (3.8)
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4. Runup solution for single waves
We now consider a single wave approaching the slope from the constant depth

region. Such a single wave event may be described in terms of a Gaussian shape
(see e.g. Carrier et al. 2003) or in terms of a solitary wave (see e.g. Synolakis
1987). However, as discussed in § 1, it is essential to avoid the classical solitary
wave tie between the wavenumber (or frequency) and the wave height to depth ratio.
Consequently, we choose the functional shape of a solitary wave, but take the freedom
of defining the duration and the height of the wave independently. Hence, at x = x0

the incoming time series is described by

ηi(x0, t) = A0 sech2Ω (t − t1) , (4.1)

where the frequency Ω defines the effective time-span of the phenomenon, while t1 is
an arbitrary phase shift. A good estimate of the duration of (4.1) is T =2π/Ω beyond
which the function drops below 0.75 % of its peak value.

Note that Didenkulova et al. (2007) recently determined the sensitivity of the
maximum runup Rup to the incoming shape of single pulses. They considered
sinusoidal half-waves given by cosn(πζ ), soliton-type waves given by sechn(ζ ),
Lorentzian waves given by (1 + ζ 2)−n and quasi-Gaussian waves given by exp(−ζ n)
for different values of n. For each of the wave forms they introduced a measure of
the wave duration, e.g. defined by the spatial integral of the elevation normalized
by its wave height. Based on (4.1) this yields T =2/Ω in contrast to our choice of
T =2π/Ω .

The Fourier transform of (4.1) reads

Φ̃i(ω) =

(
A0

Ω2

√
π

2

)
ωeiωt1

sinh πω
2Ω

. (4.2)

We insert (4.2) in (2.38)–(2.38) and obtain

V (λ) =
A0

√
πt0

γΩ2
i e−iπ/4

∫ ∞

−∞

ω5/2

sinh πω
2Ω

e−iω(λ−t1−2t0) dω, (4.3)

R(λ) =
A0

√
πt0

Ω2
e−iπ/4

∫ ∞

−∞

ω3/2

sinh πω
2Ω

e−iω(λ−t1−2t0) dω − V 2

2g
. (4.4)

4.1. Evaluation of contour integrals

The integrals to be evaluated in (4.4)–(4.4) are

IR = lim
R→∞

∫ R

−R

ωme−iω(λ−t1−2t0)

sinh (bω)
dω, (4.5)

where b = π/(2Ω), m =3/2 for R(λ) and m =5/2 for V (λ). These integrals can be
determined by applying classical techniques from mathematical physics and complex
analysis (see e.g. Levinson & Redheffer 1970; Mathews & Howell 2001; Kelly 2006).
Synolakis (1987) paved the way by outlining the necessary procedure in connection
with solitary waves, which leads to integrals similar to (4.5).

As a result of the contour integration, we get

IR = im+12m+2Ωm+1Γ (m, θ), (4.6)
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Figure 3. Temporal variation of the polylogarithm Li for shoreline motions of a single
wave. (a) Elevation polylogarithm (m= −3/2); (b) velocity polylogarithm (m= −5/2); (c)
acceleration polylogarithm (m= −7/2). Location of possible breaking shown as markers.

where

Γ (m, θ) ≡
∞∑

n=1

(−1)n nm exp(2nθ), (4.7)

θ ≡ Ω (λ − t1 − 2t0) . (4.8)

Note that exactly the same phase function was established in (3.4) for the sinusoidal
wave input.

The power series (4.8) formally only converges within the open unit disk in the
complex plane, i.e. for |exp 2θ | < 1, but in fact the infinite sum belongs to the so-called
polylogarithm family Li, which is defined on the whole complex plane via the method
of analytic continuation (see Lewin 1980 & 1991; Wood 1992; Weisstein 2005). From
the general definition of the Li function we identify that

Γ (m, θ) = Li
(
−m, −e2θ

)
. (4.9)

We emphasize that (4.9) makes it possible to determine the temporal variation of the
shoreline motion for the complete runup/rundown event. Note that Synolakis (1987)
and Tadepalli & Synolakis (1994) were limited by the convergence radius of (4.7)
and consequently they could predict maximum runup but not rundown of solitary
waves, maximum rundown but not runup of leading depression isosceles waves, and
breaking during runup but not during rundown.

4.2. The shoreline motion

In order to determine the analytical expressions for the shoreline elevation and
velocity, we combine (4.6), (4.8) and (4.9) with (4.4) and (4.4), which yields

γV (λ)

ΩA0

√
Ωt0

= 16
√

2πLi

(
−5

2
, −e2θ

)
, (4.10)

R(λ)

A0

√
Ωt0

= −8
√

2πLi

(
−3

2
, −e2θ

)
− V (λ)2

2gA0

√
Ωt0

. (4.11)

The variation of the three polylogarithms with respect to θ is shown in figure 3.
The velocity polylogarithm Li (with m = −5/2) has a local minimum of −0.06273
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for θ = −0.9136, and a maximum of 0.1156 for θ = 0.2786, while the elevation
polylogarithm (with m = −3/2) has a local maximum of 0.1517 for θ = −0.3657,
and a minimum of −0.06027 for θ = 1.2968. Furthermore, the velocity polylogarithm
(with m = −5/2) is zero when the elevation polylogarithm (with m = −3/2) has its
maxima/minima. This also follows directly from the functional property (Wood 1992)

∂Li(m, eθ )

∂θ
= Li(m − 1, eθ ). (4.12)

This makes it easy to determine the maximum runup and drawdown elevations and
velocities from (4.11) and (4.11):

Rup

A0

√
Ωt0

= 3.043,
Rdown

A0

√
Ωt0

= −1.209, (4.13)

γVup

ΩA0

√
Ωt0

= −2.516,
γVdown

ΩA0

√
Ωt0

= 4.636. (4.14)

Obviously, the runup elevation is significantly larger than the rundown elevation,
while the rundown velocity is significantly larger than the runup velocity. This is in
contrast to the sinusoidal wave results (3.3)–(3.4), which are symmetric. We can also
conclude that the runup elevation of a single hump will be smaller than that of a
sinusoidal wave with the same crest level, while the maximum rundown velocity will
be significantly greater.

4.3. Breaking criterion for single waves

We differentiate (4.11) with respect to λ by using the polylogarithmic property (4.12)
and find that according to (2.23), the Jacobian will vanish if(

Ω2A0

gγ 2

√
Ωt0

)
32

√
2πLi

(
−7

2
, −e2θ

)
= −1. (4.15)

The variation of the acceleration polylogarithm Li (with m = −7/2) is shown in
figure 3: The first minimum occurs during runup and yields −0.028047 for
θ = −1.3642, while the second and considerably larger minimum occurs during
rundown and yields −0.07988 for θ = 0.7188. Notice that in contrast to the sinusoidal
case, breaking will not occur at the point of maximum rundown, but slightly earlier
during the rundown motion. This leads to two different breaking criteria

A0

h0

= 0.4445

(
Ω2h0

gγ 2

)−5/4

(during runup), (4.16)

A0

h0

= 0.1561

(
Ω2h0

gγ 2

)−5/4

(during rundown). (4.17)

The smaller the number, the stronger the criterion. Hence, the breaking criterion for
runup is almost three times weaker than the breaking criterion for rundown.

4.4. The special case of solitary waves satisfying the KdV equation

It is straight forward to utilize the single wave solutions, to derive runup expressions
for solitary waves satisfying the KdV equation. In this case Ω is not a free choice,
but it is tied to the nonlinearity of the wave via the relations

Ω = Kc, K =
1

h0

√
3A0

4h0

, c =
√

g(h0 + A0). (4.18)

We shall now insert these restrictions in our single wave solution and verify the
outcome against the solitary wave solution of Synolakis (1987). For this purpose, we
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approximate the celerity by
√

gh0 and obtain

Ωt0 =
Ωx0√
gh0

� Kx0 =

√
3

4

√
A0

h0

x0

h0

=

√
3

4

√
A0

h0

γ −1 (4.19)

and

ΩA0√
gh0

� KA0 =

√
3

4

(
A0

h0

)3/2

. (4.20)

By inserting (4.19)–(4.20) in (4.13)–(4.14) we get

Rup

h0

= 2.832γ −1/2

(
A0

h0

)5/4

,
Rdown

h0

= −1.125γ −1/2

(
A0

h0

)5/4

, (4.21)

Vup√
gh0

= −2.028γ −3/2

(
A0

h0

)7/4

,
Vdown√

gh0

= 3.736γ −3/2

(
A0

h0

)7/4

. (4.22)

Note that Rup in (4.21) is in agreement with (3.7) in Synolakis (1987). Expressions for
Rdown , Vup and Vdown were not provided by Synolakis (1987).

Also the breaking criteria (4.16)–(4.17) are easy to translate from single waves to
solitary waves, and by inserting (4.20) we obtain

A0

h0

< 0.8183 γ 10/9 (during runup), (4.23)

A0

h0

< 0.5139 γ 10/9 (during rundown). (4.24)

Note that (4.23) is identical to the breaking criterion for runup given by Synolakis
(1987) in his (6.3). The condition for the more critical rundown phase was not provided
by Synolakis (1987).

5. Runup solution for N-waves
The runup of leading depression waves (i.e. waves with a small negative leading

wave followed by a higher positive one) has been studied by, e.g. Pelinovsky & Mazova
(1992), Tadepalli & Synolakis (1994, 1996), Carrier et al. (2003) and Kânoğlu (2004).

In the following we describe the incident N-waves by two counter-acting single
waves given by

ηi(x0, t) = A1 sech2Ω1(t − t1) − A2 sech2Ω2(t − t2), (5.1)

where the frequencies can be chosen freely to represent the phenomena at hand. The
Fourier transform of (5.1) readily yields

Φ̃i(ω) =

√
π

2

(
A1

Ω2
1

ωeiωt1

sinh πω
2Ω1

− A2

Ω2
2

ωeiωt2

sinh πω
2Ω2

)
, (5.2)

and the resulting contour integral can be split up into two parts, which are both
well known from the previous single-wave calculation. We choose to simplify the
formulation further by assuming that Ω1 =Ω2 = Ω , and fix the phase shift between
the two waves to be Ω(t1 − t2) = π/2. Furthermore, we introduce the amplitude ratio
μ ≡ A2/A1 which covers the interval 0 � μ � 1. Now the isosceles N-wave is
represented by μ = 1, the generalized N-wave is represented by 0 < μ < 1, and the
single wave considered in the previous section is represented by μ = 0.
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It should be emphasized that the crest elevation of the incoming N-waves depends
on μ: For μ = 0 it is A1, and then it drops gradually to 0.8585A1 for the case of μ = 1.
Obviously, this difference should be taken into consideration if the runup of two
different N-waves is to be compared in absolute terms. On the other hand, it may be
more relevant for a fair comparison to require similarity in incoming potential/kinetic
energy rather than in wave crest elevation. We shall not pursue this issue any further
in this work.

The resulting shoreline motion follows directly from (4.11)–(4.11), i.e.

γV (λ)

ΩA1

√
Ωt0

= 16
√

2πΓμ

(
5

2
, θ, μ

)
, (5.3)

R(λ)

A1

√
Ωt0

= −8
√

2πΓμ

(
3

2
, θ, μ

)
− V (λ)2

2gA1

√
Ωt0

, (5.4)

where

Γμ(m, θ, μ) ≡ Li(−m, −e2θ ) − μLi(−m, −e2θ+π), θ ≡ Ω (λ − t1 − 2t0) . (5.5)

The variation of Γμ(m, θ, μ) with respect to θ is shown in figure 4(a) for m =3/2
(elevation) and in figure 4(b) for m =5/2 (velocity) for μ =0, 0.25, 0.5 and 1. We
notice that the first maximum draw-down occurs at θ � −2 (for μ > 0), followed
by the first maximum runup occurring at θ � −0.35, and then the second maximum
draw-down at θ � 1.35. We also notice that in agreement with (4.12), the elevation
peaks whenever the velocity is zero.

The maxima/minima of the shoreline velocities and elevations can be expressed as

γVup/down

ΩA1

√
Ωt0

= χvelo (μ) ,
Rup/down

A1

√
Ωt0

= χelev (μ) , (5.6)

and figure 5 shows the variation of χvelo and χelev as a function of μ for the first
draw-down (1), the following runup (2) and the second draw-down (3). Generally,
the runup elevation is always larger than any of the draw-down elevations, and it
increases with μ, i.e. the runup increases when the negative forerunner in the leading
depression becomes larger. For μ < 0.62 the draw-down velocity exceeds the runup
velocity, and vice versa for μ > 0.62. For the special case of μ =1 (the isosceles
N-wave) we get

χvelo (1) =

⎧⎨⎩ 2.259 (θ = −2.527),
−6.687 (θ = −1.214),

5.204 (θ = 0.281),
χelev (1) =

⎧⎨⎩−2.676 (θ = −2.010),
4.243 (θ = −0.345),

−0.712 (θ = 1.438).

Notice that although the incoming isosceles is a symmetric wave, the runup and
draw-down solutions are not symmetric. We also notice that the elevation and
velocity coefficents are generally different. Both observations are in contrast to the
sinusoidal wave solution (3.3)–(3.4), which yields χelev = χvelo = ± 2

√
π � ±3.5449.

5.1. Breaking criterion for N-waves

We differentiate (5.4) with respect to λ by using the polylogarithmic property (4.12)
and find that according to (2.23), the Jacobian will vanish if(

Ω2A1

gγ 2

√
Ωt0

)
32

√
2πΓμ

(
7

2
, θ, μ

)
= −1. (5.7)

Figure 4(c) shows the variation of Γμ(7/2, θ, μ) with respect to θ for μ = 0, 0.25,
0.5 and 1. We notice that the minima generally occur just after the first maximum
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(a)

(b)

(c)

4

3
2

1

–4 –3 –2 –1 0 1 2 3

–4 –3 –2 –1 0 1 2 3

–4 –3 –2 –1 0

θ

1 2 3

–2

0

2

4

–
8
√2

π
 Γ

μ
 (

3
/2

, 
θ
, 
μ

)

4

3
2

1

–8

–6

–4

–2

0

2

4

6

4

3

2
1

–15

–10

–5

0

5

10

15

1
6
√2

π
 Γ

μ
 (

5
/2

, 
θ
, 
μ

)
3
2
√2

π
 Γ

μ
 (

7
/2

, 
θ
, 
μ

)

Figure 4. Temporal variation of the relevant polylogarithms for shoreline motions of leading
depression N -waves. (a) Elevation polylogarithm (m= −3/2); (b) velocity polylogarithm
(m= −5/2); (c) acceleration polylogarithm (m= −7/2). 1: μ= 0; 2: μ= 0.25; 3: μ= 0.50;
4: μ= 1.0. Location of possible breaking shown as markers on each curve.

rundown (i.e. during runup) and just before the second maximum rundown (i.e. during
rundown). The locations of these events are shown in figure 4(a–c) as markers on
the elevation, velocity and acceleration polylogarithms. The corresponding breaking
criteria can be expressed as

A1

h0

= χbreak (μ)

(
Ω2h0

gγ 2

)−5/4

, (5.8)

where the variation of χbreak with μ is shown in figure 6. The smaller the number the
stronger the criterion. We notice that the strongest criterion occurs during rundown
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Figure 5. Maximum runup/rundown elevations and velocities for leading depression N -waves
as a function of μ= A2/A1. (a) Shoreline elevation; (b) shoreline velocity. (1) first rundown;
(2) runup; (3) second rundown.

for μ < 0.48, and during runup for μ > 0.48. In all cases the criteria are stronger
than for sinusoidal waves, which yields χbreak = (2

√
π)−1 � 0.282.

6. Comparison of sinusoidal waves, single waves and N-waves
We emphasize that the different maxima and minima of the shoreline velocities and

elevations for sinusoidal waves, single waves and N-waves presented in §§ 3, 4 and 5,
can all be expressed on the form

Rup/down

A0

√
Ωt0

= χelev ,
γVup/down

ΩA0

√
Ωt0

= χvelo , (6.1)

where γ is the bed slope, Ω is the wave frequency which defines the wave duration
and A0 is the wave amplitude of the incoming wave at x = x0 ( = h0/γ ). Note that on
the basis of the formulations by Synolakis (1987) and Tadepalli & Synolakis (1994),
Geist (1999) came to the conclusion that ‘for N-waves the relationship between the
amplitude of the incident wave and the maximum runup is not a linear one and that
R is proportional to the amplitude to the power 5/4’. We can now conclude that the
relationship is indeed a linear one for all possible wave forms, and that the apparent
nonlinearity in the expressions by Synolakis (1987) and Tadepalli & Synolakis (1994)
is caused by their specific solitary wave tie between frequency and wave amplitude.
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Figure 6. Breaking criteria for leading depression N -waves as a function of μ= A2/A1. Full
line indicates the strongest breaking criteria. The marker indicates the breaking criterion for
sinusoidal waves.

Our result is in agreement with earlier findings by Pelinovsky & Mazova (1992) and
Didenkulova et al. (2007).

Alternatively, we can reformulate (6.1) by using that t0 = x0/
√

gh0 =
√

h0/(gγ 2),
which yields

Rup/down

A0

= χelev

(
Ω2h0

gγ 2

)1/4

,
γVup/down

ΩA0

= χvelo

(
Ω2h0

gγ 2

)1/4

, (6.2)

and similarly the different theoretical breaking criteria established in §§ 4, 5 and 6 can
all be expressed on the form

Abreak
0

h0

= χbreak

(
Ω2h0

gγ 2

)−5/4

. (6.3)

Note that the maximum values of Rup/down and Vup/down occur whenever A0 = Abreak
0 ,

and by inserting (6.3) in (6.2) we obtain the limiting results

Rlimit
up/down

h0

= χelevχbreak

(
Ω2h0

gγ 2

)−1

,
γV limit

up/down

Ωh0

= χveloχbreak

(
Ω2h0

gγ 2

)−1

. (6.4)

As shown by Madsen & Fuhrman (2008), it is convenient to introduce the classical
surf-similarity parameter, which was established by Battjes (1974) for the description
of breaking wind waves in the surf zone. This parameter is defined by ξ ≡ γ /

√
H0/L∞,

where L∞ = gT 2/(2π). If we interpret T as the duration (i.e. 2π/Ω) rather than the
wave period, we obtain

ξ =
√

π

(
A0

h0

)−1/2 (
Ω2h0

gγ 2

)−1/2

, (6.5)

by which (6.2) and (6.4) can be expressed by

Rup/down

A0

= χelevπ1/4

(
A0

h0

)−1/4

ξ−1/2,
Rlimit

up/down

A0

=
χelevχbreak

π
ξ 2, (6.6)
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Vup/down√
gA0

= χveloπ3/4

(
A0

h0

)−1/4

ξ−3/2,
V limit

up/down√
gA0

=
χveloχbreak√

π
ξ . (6.7)

Figure 7 shows the variation of R∗
up/A0, where R∗

up ≡ min(Rup , Rlimit
up ) and where

χbreak is the smallest relevant value for the particular wave shape. The solutions are
shown as a function of ξ for two different values of A0/h0 and for four different
wave shapes: (1) sinusoidal waves; (2) single waves; (3) N-wave with μ =0.5; (4)
isosceles wave with μ =1. The full lines represent A0/h0 = 0.00015, while the dashed
lines represent A0/h0 = 0.01. We notice that for a certain value of ξ , which allows for
non-breaking waves of all four types, it is clear that the isosceles wave leads to the
highest runup, while the single wave leads to the lowest. For a given wave shape and a
given value of A0/h0, the relative runup Rup/A0 increases for decreasing values of ξ as
long as breaking does not occur. The smaller the A0/h0, the larger the amplification
Rup/A0. The theoretical limit of the runup solutions is defined by Rlimit

up /A0, and it
is a function of ξ but not a function of A0/h0. This curve will intersect and limit
the runup curves at ξ = ξ break , and the smaller the A0/h0, the larger the ξ break . It is
also clear that ξ break is generally higher for N-waves than for sinusoidal waves i.e.
they break much more easily and on steeper slopes. For a given long wave, the worst
case scenario is a beach which corresponds to ξ = ξ break . Beyond this point, i.e. for
ξ < ξ break , the theoretical solutions are not valid. One may speculate if the runup
of breaking waves will follow the limiting curve Rlimit

up corresponding to some sort
of saturated breaker model. This assumption is, however, not correct as documented
by laboratory measurements of, e.g. breaking sinusoidal waves and breaking solitary
waves, which result in runups much larger than predicted by Rlimit

up (see e.g. Synolakis
1987; Madsen & Fuhrman 2008). The runup of breaking wave events is beyond the
scope of the present work.

Figure 8(a–c) shows the shoreline motion due to incoming sinusoidal waves, single
waves and N-waves for a specific test case. We consider an offshore depth h0 = 4000 m,
and a beach slope γ = 1/75 i.e. x0 = 300 km, t0 = 1514 s and c =

√
gh0 = 198 m s−1.
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Figure 8. Shoreline motion due to incoming sinusoidal waves, single waves and
N -waves. Specifications: h0 = 4000 m, γ = 1/75, T = 13 min, Ω = 2π/T . (1) Sinusoidal wave
(A0 = 0.55 m). (ii) Single wave (A0 = 0.55 m). (3) Leading depression wave (A1 = 0.60 m,
μ= 0.5). (4) Isosceles depression wave (A1 = 0.64 m, μ= 1.0). (a) Incoming surface elevation
at x = x0; (b) shoreline elevation; (c) shoreline velocity.

The wave period is chosen to be T =13 min as a typical tsunami period, and with
Ω = 2π/T we get 2t0Ω � 24, i.e. significantly larger than 4.88 as required in connection
with (2.36). The incoming time series are described by η1(x0, t) =A0 cos (Ω(t − t1) −
π/2) for the sinusoidal wave, by η2(x0, t) =A0 sech2 (Ω(t − t1) − π/4) for the single
wave and by η3(x0, t) =A1

(
sech2 (Ω(t − t1) − π/4) − μ sech2 (Ω(t − t1) + π/4)

)
for the

N-waves. In all cases we use t1 = T . The incoming wave amplitudes for the different
wave theories are chosen so that the crest level is the same at x = x0. This leads to
(1) A0 = 0.55 m (sinusoidal wave); (2) A0 = 0.55 m (single wave); (3) A1 = 0.60 m
(N-wave with μ = 0.5); d) A1 = 0.64 m (isosceles N-wave with μ = 1). The incoming
time series are shown in figure 8(a). The runup is determined by using the analytical
expressions (3.4)–(3.3) for the sinusoidal waves, and (5.4)–(5.4) for the N-waves. The
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resulting temporal variations of the shoreline elevation and velocity are depicted in
figure 8(b–c). It should be emphasized that we get exactly the same solution by
invoking the convolution integrals given by (2.42)–(2.43). All four cases correspond
to A0/h0 � 0.00015 and ξ � 12. According to figure 7, this is on the edge of wave
breaking for the isosceles wave, while the other wave forms are further from breaking.
Consequently, figure 8(a–c) shows that the isosceles wave leads to the highest runup,
while the single wave leads to the smallest. This is in good agreement with figure 7.
All the N-wave profiles are significantly steeper than the sinusoidal wave, and thus
their runup/rundown velocities are significantly higher, again with the isosceles wave
leading to the largest velocities.

Finally, let us consider the possibility of using solitary wave theory to represent the
single wave in figure 8(a–c). In this case the incoming time series will be described
by η4(x0, t) =A4 sech2 (Ωs(t − t1) − π/4) where

Ωs = csKs , Ks =
1

h0

√
3

4

A4

h0

, cs =
√

g(h0 + A4).

If we choose to match the incoming wave heights, i.e. A4 = A0 = 0.55 m, the resulting
effective wave period Ts =2π/Ωs becomes 16 times larger than T = 13 min. In this
case the maximum runup elevation on the beach becomes 1.46 m for the solitary wave
in contrast to the 5.84 m reached by the single wave in figure 8(b). Alternative if we
choose to match the wave periods, i.e. Ts = T = 13 min, this requires that A4 = 136 m
on the depth of h0 = 4000 m. This example demonstrates the problem of using solitary
wave theory to represent tsunamis. If applied in deep water, the solitary theory will
typically result in effective periods which are much too large. On the other hand, if
applied in shallow water (which is the case for most experimental investigations), the
solitary theory will result in periods which are much too small: As an example a wave
height of 6 m in a depth of 30 m leads to Ts = 26 s. It is obviously necessary to be
able to choose the temporal and spatial scales independently of the wave height to
water depth ratio and for this reason we do not recommend to apply solitary wave
theory for tsunamis.

7. Runup solution for transient waves
A time series of an incident tsunami hitting the beach would typically originate from

a distant disturbance caused by a seismic event in the deep ocean. This disturbance
would generate a transient wave of extremely small nonlinearity and very small
dispersion, and any abrupt features of the initial disturbance would gradually be
smoothed over long-travel distances by the effect of dispersion. In this section we
consider the canonical situation where the nonlinear runup on the slope is preceded
by long-distance transformation of linear transient waves over a constant depth.
This part of the problem is adequately modelled by the linear KdV equation, which
captures the weak dispersion of the leading waves in the wavetrain.

7.1. Exact solutions to the linear KdV equation on a constant depth

According to Whitham (1974), his § 13.6, an exact solution to the linear KdV equation
reads

ηδ(χ, τ ) =

(
2

τ

)1/3

Ai (Z(χ, τ )), (7.1)
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where Ai is the Airy function, and where

χ ≡ x̂

h0

, τ ≡ t

√
g

h0

, Z(χ, τ ) ≡ (χ − τ )

(
2

τ

)1/3

. (7.2)

Here x̂ is a shoreward directed horizontal coordinate being zero at the front of the
initial disturbance, while the travel distance over constant depth is denoted x̂0 and
the distance up the slope is x0 = h0/γ . Hence in terms of the runup coordinate system
defined in figure 1, we have that (x̂ − x̂0) = −(x − x0). Whitham (1974) points out
that (7.1) is actually the impulse response function to the problem, where the initial
condition is described as a delta function at x̂ = 0. We are interested in the general
initial condition

η0(χ, 0) =

{
F (χ) for χ1 < χ < 0,

0 otherwise,
(7.3)

in which case (7.1) should be generalized to the convolution integral

η(χ, τ ) =

∫ ∞

−∞
F (χ − y)ηδ(y, τ ) dy, (7.4)

and from the bounds of (7.3) we find that χ1 < χ − y < 0 ⇒ χ < y < χ − χ1.
Hence (7.4) can be simplified to

η(χ, τ ) =

(
2

τ

)1/3 ∫ χ−χ1

χ

F (χ − y)Ai (Z(y, τ )) dy, (7.5)

and by changing the integration variable from y = χ to s =Z(χ, τ ) this becomes

η(χ, τ ) =

∫ Z(χ−χ1,τ )

Z(χ,τ )

F

(
(Z(χ, τ ) − s)

(
2

τ

)−1/3
)

Ai (s) ds. (7.6)

Note that if F (x) simplifies to a Heaviside Unitstep function with amplitude a, we
get χ1 → −∞, and (7.6) simplifies to

η(χ, τ ) =

∫ ∞

Z(χ,τ )

aAi (s) ds, (7.7)

which is the expression discussed by Whitham (1974), § 13.6.
We consider a dipole source made up of two rectangular disturbances covering the

intervals χ1 < χ < 0 with the amplitude a1 and χ2 < χ < χ1 with the amplitude a2.
In this case (7.6) simplifies to

η(χ, τ ) =

∫ Z(χ−χ1,τ )

Z(χ,τ )

a1Ai (s) ds +

∫ Z(χ−χ2,τ )

Z(χ−χ1,τ )

a2Ai (s) ds. (7.8)

We note that the difference between the lower and upper bounds of the integral in
(7.8) effectively shrinks over time according to (7.2). By the use of (7.8) we can now
easily determine the evolution of the initial disturbance while it travels on a constant
depth in the deep ocean. Madsen et al. (2008) showed that (7.8) was in excellent
agreement with numerical simulations based on a high-order Boussinesq model for
linear waves travelling up to 5000 water depths.

7.2. The runup of transient waves caused by a monopole source

By combining the convolution integrals (2.42)–(2.43) with (7.8) we can now easily
capture the prevailing features of the entire process starting with an initial disturbance
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Figure 9. Surface elevation at the toe of the slope due to a monopole source. Full line:
analytical theory based on (7.8); dashed line: numerical model (dx =400 m, dt =2.0 s).
Specifications: h0 = 4000 m, a1 = 0, a2 = 3.0 m, x̂1 = −150 km, x̂2 = −400 km, x̂0 = 12 000 km.

of arbitrary shape in the deep ocean, followed by long-distance evolution under the
influence of weak dispersion, and eventually leading to nonlinear shoaling and runup
on a plane sloping beach. We shall verify the outcome of this very swift and semi-
analytical calculation with numerical results obtained from a numerical model, which
solves the high-order Boussinesq formulation by Madsen, Fuhrman & Wang (2006).
The numerical solution procedure is based on finite difference discretizations on an
equidistant grid, and an explicit four-stage fourth-order Runge–Kutta scheme is used
for the time integration. A detailed description of the scheme can be found in Madsen,
Bingham & Liu (2002) for one horizontal dimension, and in Fuhrman & Bingham
(2004) for two horizontal dimensions. The special runup feature in the model uses a
simple linear extrapolation of variables at wet-dry boundaries and has been described
and validated recently in Fuhrman & Madsen (2008).

First, we investigate the case of a monopole source described by a single rectangular
disturbance with amplitude 3.0 m covering the interval from x̂1 = −150 km to
x̂2 = −400 km. The offshore depth is h0 = 4000 m, and the toe of the slope is
located at x̂0 = 3000 h0 = 12 000 km. The beach slope is γ =1/75, i.e. the width of the
slope is x0 = h0/γ =300 km. As a result, the incoming transient waves showing up
at the toe of the slope can be estimated by the dipole formulation (7.8) using a1 = 0
m, a2 = 3.0 m, χ1 = x̂1/h0 = −37.5, χ2 = x̂2/h0 = −100 and χ = x̂0/h0 = 3000. This is
shown as a full line in figure 9. The corresponding numerical solution obtained by
the Boussinesq model will generally contain the additional effect of wave reflection
from the slope, hence to make sure that the computed time series at the toe contains
only the incoming wave, we have (in a separate run) simulated the wave propagation
without the sloping entrance to the beach. A fixed grid size of 400 m is used leading
to a total of 33 000 grid points, while the time step is 2 s leading to a total of
36 000 time steps. The result of this computation is shown in figure 9 as the dotted
line. In general, we notice that the bulk of the disturbance covers about 40 min
and contains two peaks separated by approximately 12 min. Behind the hump, the
tail contains wave groups with shorter and shorter waves and eventually the weakly
dispersive analytical approach will become inadequate. However, the shortest waves
within the time window shown in figure 9 have periods of approximately 6 min
corresponding to kh0 � 0.36 for which the linear KdV theory still provides sufficient
accuracy. Nevertheless, we do observe phase differences between the analytical (full
line) and computed (dashed line) solutions in figure 9: The computed wave arrives
approximately 1 min earlier and it is slightly steeper. This is mainly due to amplitude
dispersion: The front of the wave has an amplitude of b = 4 m and it will propagate
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Figure 10. Shoreline motion due to a monopole source. Full line (black): analytical theory
from source to beach, i.e. based on the analytical solution from figure 9; full line (grey):
analytical theory from toe to beach, i.e. based on the numerical solution from figure 9;
dashed line: numerical model from source to beach (dx = 400 m, dt = 2.0 s). (a) Shoreline
elevation; (b) shoreline velocity. Specifications: h0 = 4000 m, a1 = 0, a2 = 3.0 m, x̂1 = −150 km,
x̂2 = −400 km, x̂0 = 12 000 km, x0 = 300 km, γ = 1/75.

with the celerity cn =
√

g(h0 + b) � 198.19 m s−1, while the front of the analytical
solution effectively propagates with c0 =

√
gh0 � 198.09 m s−1. Although this effect

is extremely small, it accumulates to an arrival time deficit of approximately −30 s
over the distance of 12 150 km. Overall, however, we see a good agreement between
the analytical and computed time series at the toe of the slope, which confirms that
(7.8) provides a very effective estimate of the processes in the deep ocean.

Once the waves reach the toe of the slope and start the shoaling process towards the
shore, frequency dispersion is completely neglected in the analytical method. Hence,
in reality, the shorter waves will be slightly delayed during their runup compared
to the theory, but this effect can be shown to be quite insignificant for the present
wavetrain due to the relatively short travel distance. We determine the analytical
shoreline motion by using the convolution integrals (2.42)–(2.43) combined with the
time series of the incoming surface elevation at the toe. Figure 10 shows two analytical
calculations: (1) A source-to-beach calculation based on the analytical solution at the
toe (shown as the full black line); (2) A toe-to-beach calculation based on the computed
time series at the toe (shown as the full grey line). The runup elevation and shoreline
velocity are shown in figures 10(a) and 10(b), respectively. The initial runup elevation
becomes approximately 22 m and after the main hump has passed a similar rundown
occurs. Then a tail of wave groups with shorter waves shows up. The two analytical
results are quite similar except for a phase shift.

Figure 10(a, b) also show the numerical shoreline computations using the fixed
grid of 400 m all the way from the source to the shoreline. Although this grid size is
somewhat coarse for the runup region, it is adequate for the leading long waves in the
transient wavetrain resulting in a relatively large runup excursion (order 4 km) and
a large distance from maximum draw-down to the first offshore crest in the standing
wavetrain (order 6 km). From figure 10(a, b) we notice a fairly good agreement
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Figure 11. Surface elevation at the toe of the slope due to a dipole source. Full line: analytical
theory based on (7.8); dashed line: numerical model (dx = 400 m, dt = 2.0 s). Specifications:
h0 = 4000 m, a1 = −1.0 m, a2 = 3.0 m, x̂1 = −150 km, x̂2 = −400 km, x̂0 = 12 000 km.

between the numerical solution and the two analytical calculations up to t � 1120
min. The toe-to-beach calculation is in better agreement with the numerical runup than
the source-to-beach calculation, but the main features of the runup are captured by
both solutions. Beyond the time of 1120 min, discrepancies between the analytical and
numerical solutions start to show up and they are most pronounced in the shoreline
velocity. The reason is that the chosen grid size of 400 m is too coarse to provide
an accurate runup of the shorter waves, because they have shoreline excursions of
typically 800 m and a distance to the first offshore crest of only 1600 m. When the
grid becomes too coarse the runup algorithm, which is based on linear extrapolation,
will typically lead to a severe underestimation of the maximum drawdown and of the
shoreline velocities, as seen in figure 10(a, b).

Finally, it should be emphasized that the runup transfer functions for elevation and
especially for the velocity continuously increase with decreasing wave periods (see
e.g. figure 2), and this trend will only be stopped by the process of wave breaking. We
do not have a theoretical threshold for wave breaking of transient waves, but in fact
breaking will clearly show up in the analytical results and it will manifest as very steep
and double valued velocity time series, while the runup elevations will show a ‘fishtail’
variation near maximum rundown. This condition is almost reached in figure 10(a)
after the hump has passed for t > 1140 min.

7.3. The runup of transient waves caused by a dipole source

Next, we investigate the case of a dipole source described by two adjacent rectangular
disturbances with a1 = −1.0 m covering the interval from x̂ = 0 to x̂1 = −150 km and
by a2 = 3.0 m covering the interval from x̂1 to x̂2 = −400 km. All other specifications
are the same as before. The incoming transient waves at the toe of the slope are
estimated by the dipole formulation (7.8) and the result is shown as a full line in
figure 11. For comparison, the numerical solution excluding reflections from the slope
is shown as the dashed line in figure 11. The quality of the agreement is similar to
the case of the monopole source from figure 9.

Figure 12(a, b) show the resulting shoreline elevation and velocity. Again we
determine two analytical solutions for the shoreline motion: a source-to-beach
calculation based on the analytical solution at the toe (shown as full black line)
and a toe-to-beach calculation based on the computed time series at the toe (shown
as full grey line). The initial runup becomes approximately 28 m and after the main
hump has passed a similar rundown occurs. Then a tail of wave groups shows up
and they are similar to the tail for the monopole source shown in figure 10. For the
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Figure 12. Shoreline motion due to a dipole source. Full line (black): analytical theory
from source to beach, i.e. based on the analytical solution from figure 11; full line (grey):
analytical theory from toe to beach, i.e. based on the numerical solution from figure 11; dashed
line: numerical model from source to beach (dx = 400 m, dt = 2.0 s). (a) Shoreline elevation;
(b) shoreline velocity. Specifications: h0 = 4000 m, a1 = −1.0 m, a2 = 3.0 m, x̂1 = −150 km,
x̂2 = −400 km, x̂0 = 12 000 km, x0 = 300 km, γ = 1/75.

main hump of the tsunami i.e. up to approximately 1120 min the agreement between
the numerical and analytical solutions is quite good.

We note that the ‘fishtail’ variation in the runup elevation, which heralds the break
down of NSW theory, is more pronounced for the dipole than for the monopole
(figure 12 versus figure 10). It is also clear that although the two input signals reach
the same maximum elevation at the foot of the slope (figures 9 and 11), the leading
depression in the dipole amplifies the maximum runup elevation as well as the
runup velocity compared to the monopole case. This conclusion supports equivalent
observations in figure 8 in comparison between single waves and N-waves.

8. Summary and conclusion
In this work we have considered the runup of nonlinear long waves propagating

from an offshore constant depth region to a plane sloping beach. The waves are
assumed to obey the linear shallow-water equations or the linear KdV equation in the
constant depth offshore region, while they are assumed to obey the NSW equations
on the sloping beach. Based on the hodograph transformation method we have shown
that the runup elevation (velocity) is proportional to the half-derivative (three-halves
derivative) of the incoming elevation time series at the foot of the slope. This solution
is determined either in terms of the inverse Fourier transform or in terms of a simple
convolution integral. While the inverse Fourier transform (combined with complex
contour integration) is attractive for the case of simple wave forms, the alternative
convolution formulation is attractive for more complicated wavetrains.

In the first part of our work, we have considered incident single waves and N-
waves composed of positive and negative single waves, where the duration and the
wave height can be specified separately. As a result of complex contour integration,
Cauchy’s residue technique and an extension of the convergence of power series via
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analytical continuation, we have determined the corresponding temporal variations
of the runup elevation, the associated velocity and the breaking criteria in terms
of polylogarithmic functions. The resulting analytical solutions are both simple and
versatile on a geophysical scale. This part represents an extension of the work by
Synolakis (1987) and Tadepalli & Synolakis (1994) in two ways: Firstly, by avoiding
the classical solitary wave tie between wavenumber (or frequency) and the wave
height to depth ratio, we can actually represent the length- and time-scales which are
relevant for geophysical tsunamis. Secondly, we provide solutions for the complete
temporal variation of the shoreline motion improving the work of Synolakis (1987)
who described the variation only up to the maximum runup for solitary waves, and
Tadepalli & Synolakis (1994) who described the variation only up to the maximum
rundown of leading depression isosceles waves. Furthermore, we have expressed all the
maxima for runup/rundown velocities/elevations as well as the theoretical breaking
criteria as a function of the surf-similarity parameter ξ and the incoming wave
amplitude over depth ratio A0/h0. For non-breaking waves, the isosceles wave will
generally lead to runup elevations and velocities higher than any of the other wave
forms (when keeping the incident wave crest heights constant).

In the second part of our work, we have considered incoming transient wavetrains
generated by monopole and dipole disturbances in the deep ocean. The evolution
of these wavetrains, travelling over constant depth in the ocean, is influenced by
weak dispersion and is governed by the linear KdV equation. This process has been
described by a convolution integral involving the Airy function. When combined with
the convolution method for runup, this approach provides a very versatile procedure,
which swiftly captures the prevailing features for the entire process starting with an
initial disturbance of arbitrary shape in the deep ocean, followed by the long-distance
evolution under the influence of weak dispersion, and eventually leading to nonlinear
shoaling and runup on a plane sloping beach. We have compared the analytical results
with numerical results obtained by a high-order Boussinesq model (using a fixed grid
size of 400 m): For the leading long waves in the transient wavetrain (periods of
order 10–13 min) we find a good agreement in runup elevation and velocity. Once the
main hump of water has passed, the wave components become shorter and shorter
while the runup excursion becomes smaller. This situation requires a finer grid size in
order to capture the runup with sufficient accuracy, and therefore we notice a growing
discrepancy between the analytical solution and the numerical solution. The main
features excluded from this approach are those due to (1) effects of two horizontal
dimensions, (2) site-specific bottom variation, (3) the possible formation of undular
bores due to combined dispersive and nonlinear effects, and (4) wave breaking close
to the beach.

First of all, special thanks to Eric Geist for clarifying earlier work on the runup
of N-waves and to David Fuhrman for making the numerical simulations applied
in figures 9–12. Secondly, we thank the Danish Center for Scientific Computing for
providing the invaluable supercomputing time used in the numerical simulations. This
work was financially supported by the Danish Technical Research Council (STVF
Grant number 9801635). Their support is greatly appreciated.
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